A collaboration between the Sprekeler and Letzkus labs reveals that volume release of GABA by layer 1 NDNF interneurons controls inhibitory signaling in neocortex in an unconventional way.
Abstract:
Neuronal processing of external sensory input is shaped by internally generated top–down information. In the neocortex, top–down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected. We first confirm experimentally that in the auditory cortex, synapses from somatostatin-expressing (SOM) onto NDNF neurons are indeed modulated by ambient Gamma-aminobutyric acid (GABA). Shifting to a computational model, we then show that this mechanism introduces a distinct mutual inhibition motif between NDNF interneurons and the synaptic outputs of SOM interneurons. This motif can control inhibition in a layer-specific way and introduces competition between NDNF and SOM interneurons for dendritic inhibition onto pyramidal cells on different timescales. NDNF interneurons can thereby control cortical information flow by redistributing dendritic inhibition from fast to slow timescales and by gating different sources of dendritic inhibition.
Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)
TRR 384/1 2024, 514483642
To provide you with an optimal experience, we use technologies such as cookies to store and/or access device information. If you consent to these technologies, we may process data such as browsing behavior or unique IDs on this website. If you do not give or withdraw your consent, certain features and functions may be impaired.